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HOMOMORPHISMS OF VECTOR BUNDLES ON CURVES

AND PARABOLIC VECTOR BUNDLES

ON A SYMMETRIC PRODUCT

INDRANIL BISWAS AND SOURADEEP MAJUMDER

(Communicated by Lev Borisov)

Abstract. Let Sn(X) be the symmetric product of an irreducible smooth
complex projective curve X. Given a vector bundle E on X, there is a cor-
responding parabolic vector bundle VE∗ on Sn(X). If E is nontrivial, it is
known that VE∗ is stable if and only if E is stable. We prove that

H0(Sn(X), Hompar(VE∗ ,VF∗))=H0(X, F⊗E∨)⊕(H0(X, F )⊗H0(X, E∨)).

As a consequence, the map from a moduli space of vector bundles on X to the
corresponding moduli space of parabolic vector bundles on Sn(X) is injective.

1. Introduction

Let X be an irreducible smooth complex projective curve. Fixing an integer
n ≥ 2, let Sn(X) be the n–fold symmetric product of X. Let D ⊂ Sn(X) be
the reduced irreducible divisor parametrizing nonreduced effective divisors of X of
length n. Let

q1 : Sn(X)×X −→ Sn(X) and q2 : Sn(X)×X −→ X

be the natural projections. The tautological hypersurface on Sn(X) × X will be
denoted by Δ. Given a vector bundle E on X, define the vector bundle

F(E) := q1∗(OΔ ⊗OSn(X)×X
q∗2E) −→ Sn(X).

This vector bundle F(E) has a natural parabolic structure over the divisor D; the
parabolic weights are 0 and 1/2. (See [BL] for the construction of the parabolic
structure.) This parabolic vector bundle will be denoted by VE∗.

The parabolic vector bundle VE∗ is semistable if and only if the vector bundle
E is semistable [BL, Lemma 1.2]. If E is not the trivial vector bundle, then VE∗ is
stable if and only if E is stable [BL, Theorem 1.3].

Therefore, a morphism from a moduli space of vector bundles on X to a moduli
space of parabolic vector bundles on Sn(X) is obtained by sending any E to VE∗.

Our aim here is to show that the above morphism is injective.
For two parabolic vector bundles V∗ and W∗ on Sn(X) with D as the parabolic

divisor and underlying vector bundles V and W respectively, let Hompar(V∗ , V∗)
be the vector bundle on Sn(X) defined by the sheaf of homomorphisms from V to
W preserving the parabolic structures.
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3018 I. BISWAS AND S. MAJUMDER

We prove the following (see Corollary 3.4):

Theorem 1.1. Let E and F be stable vector bundles over X with

degree(E)/rank(E) = degree(F )/rank(F ).

Then

H0(Sn(X), Hompar(VE∗ ,VF∗)) = 0

if E �= F , and

dimH0(Sn(X), Hompar(VE∗ ,VF∗)) = 1

if E = F .

In fact we show that for any vector bundles E and F on X,

H0(Sn(X), Hompar(VE∗ ,VF∗)) = H0(X, F ⊗ E∨)⊕ (H0(X, F )⊗H0(X, E∨)).

(See Theorem 3.3.)

2. Invariants of the tensor product

LetX be an irreducible smooth projective curve defined over C. Take any integer
n ≥ 2. For any i ∈ [1 , n], let

(2.1) pi : Xn −→ X

be the projection to the i–th factor. The group of permutations of {1 , · · · , n} will
be denoted by Σ(n). There is a natural action of it on Xn,

(2.2) Xn × Σ(n) −→ Xn,

that permutes the factors. If V0 is a vector bundle on X, the above action of Σ(n)
on Xn has a natural lift to an action of Σ(n) on the vector bundle

V0 :=

n⊕
i=1

p∗i V0 −→ Xn

which simply permutes the factors in the direct sum.
Take two algebraic vector bundles V and W over X. Define

V :=
n⊕

i=1

p∗i V and W :=
n⊕

i=1

p∗iW.

As noted above, V and W are equipped with an action of Σ(n). The Künneth
formula says that

H0(Xn, V ⊗W) =

n⊕
i,j=1

H0(Xn, p∗i V ⊗ p∗jW ).

Using the projection formula, we have

(2.3) H0(Xn, p∗iV ⊗ p∗iW ) = H0(X, V ⊗W ) ,

and if i �= j, then

(2.4) H0(Xn, p∗i V ⊗ p∗jW ) = H0(X, V )⊗H0(X, W ).
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Using these we get an embedding

Φ : H0(X, V ⊗W )⊕ (H0(X, V )⊗H0(X, W )) −→
n⊕

i,j=1

H0(Xn, p∗i V ⊗ p∗jW )

= H0(Xn, V ⊗W)

(2.5)

that sends any s ∈ H0(X, V ⊗W ) to

n⊕
i=1

p∗i s ∈
n⊕

i=1

H0(Xn, p∗i (V ⊗W )) ⊂
n⊕

i,j=1

H0(Xn, p∗iV ⊗ p∗jW )

and sends any u⊗ t ∈ H0(X, V )⊗H0(X, W ) to

∑
(i,j)∈ [1,n]×[1,n];i �=j

(p∗i u)⊗ (p∗j t) ∈
n⊕

i,j=1;i �=j

H0(Xn, p∗i V ⊗ p∗jW )

⊂
n⊕

i,j=1

H0(Xn, p∗i V ⊗ p∗jW ).

The actions of Σ(n) of V and W together produce a linear action of Σ(n) on
H0(Xn, V ⊗W). Let

H0(Xn, V ⊗W)Σ(n) ⊂ H0(Xn, V ⊗W)

be the space of invariants.

Proposition 2.1. The homomorphism Φ in (2.5) is an isomorphism of

H0(X, V ⊗W )⊕ (H0(X, V )⊗H0(X, W ))

with H0(Xn, V ⊗W)Σ(n).

Proof. From the construction of Φ it follows immediately that

Φ(H0(X, V ⊗W )⊕ (H0(X, V )⊗H0(X, W ))) ⊂ H0(Xn, V ⊗W)Σ(n).

Also, Φ is clearly injective.
Consider the decomposition of the vector bundle

(2.6) V ⊗W = (

n⊕
i=1

p∗i (V ⊗W ))⊕ (

n⊕
i,j=1;i �=j

(p∗i V )⊗ (p∗jW ))

into a direct sum of two vector bundles. Clearly, the action of Σ(n) on V⊗W leaves
the two direct summands

(2.7)

n⊕
i=1

p∗i (V ⊗W ) and

n⊕
i,j=1;i �=j

(p∗i V )⊗ (p∗jW )

in (2.6) invariant.
Since the second subbundle in (2.7) is Σ(n)–invariant, the subspace

(2.8)

n⊕
i,j=1;i �=j

H0(Xn, (p∗iV )⊗ (p∗jW )) ⊂ H0(Xn, V ⊗W)

is left invariant by the action of Σ(n) on H0(Xn, V ⊗W).
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Let A be the complex vector space of dimension n2 −n given by the space of all
functions

α : {1 , · · · , n} × {1 , · · · , n} −→ C

such that α(i, i) = 0 for all i ∈ [1 , n]. The permutation action of Σ(n) on
{1 , · · · , n} produces an action of Σ(n) on A. Consider the Σ(n)–invariant sub-
space

n⊕
i,j=1;i �=j

H0(Xn, (p∗iV )⊗ (p∗jW ))

in (2.8). From (2.4) it follows that

(2.9) (

n⊕
i,j=1;i �=j

H0(Xn, (p∗i V )⊗ (p∗jW )))Σ(n) = AΣ(n) ⊗H0(X, V )⊗H0(X, W ) ,

where (
⊕n

i,j=1;i �=j H
0(Xn, (p∗i V )⊗ (p∗jW )))Σ(n) and AΣ(n) are the spaces of invari-

ants.
The space of invariants AΣ(n) is generated by the function

ρ : [1, n]× [1, n] −→ C

defined by (i , j) 	−→ 1−δij , where δ
i
j = 0 if i �= j and δii = 1 for all i. This follows

from Burnside’s theorem (see [La, p. 648] for Burnside’s theorem). Therefore, we
have

(2.10) AΣ(n) = C · ρ = C.

From (2.9) and (2.10) we conclude that

(2.11) (

n⊕
i,j=1;i �=j

H0(Xn, (p∗iV )⊗ (p∗jW )))Σ(n) = H0(X, V )⊗H0(X, W ).

In view of (2.6) and (2.11),
(2.12)

H0(Xn, V ⊗W)Σ(n) = (

n⊕
i=1

H0(Xn, p∗i (V ⊗W )))Σ(n)⊕ (H0(X, V )⊗H0(X, W )).

Let B be the complex vector space of dimension n given by the space of all
functions

{1 , · · · , n} −→ C.

Let B0 = C ⊂ B be the line defined by the constant functions. The group Σ(n)
has a natural action on B. From (2.12) and (2.3),

(2.13) H0(Xn, V⊗W)Σ(n) = (BΣ(n)⊗H0(X, V ⊗W ))⊕(H0(X, V )⊗H0(X, W )).

It can be shown that

BΣ(n) = B0 ,

where B0 is defined above. Indeed, this is an immediate corollary of Burnside’s
theorem mentioned above. Therefore, from (2.13),

H0(Xn, V ⊗W)Σ(n) = H0(X, V ⊗W )⊕ (H0(X, V )⊗H0(X, W )).

This completes the proof of the proposition. �
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3. Homomorphisms of vector bundles

and parabolic vector bundles

Let

(3.1) f : Xn −→ Xn/Σ(n) =: Sn(X)

be the quotient map to the symmetric product of X. Let E −→ X be a vector
bundle. The action of Σ(n) on the vector bundle

(3.2) E :=
n⊕

i=1

p∗iE

produces an action of Σ(n) on the direct image f∗E ; the morphism f∗E −→ Sn(X)
is Σ(n)–equivariant with Σ(n) acting trivially on Sn(X). The invariant direct image

(3.3) VE := (f∗E)Σ(n) ⊂ f∗E
is a locally freeOSn(X)–module. Using the action of Σ(n) on E , a parabolic structure
on the vector bundle VE is constructed (see [BL, Section 3]). This parabolic vector
bundle will be denoted by VE∗. We will now quickly recall the description of VE∗.

Let

D ⊂ Sn(X)

be the reduced irreducible divisor parametrizing all (z1 , · · · , zn) such that not all
zi are distinct. The parabolic divisor for VE∗ is D. Let

D̃ ⊂ Xn

be the reduced divisor parametrizing all (z1 , · · · , zn) such that zi �= zj for some

i , j ∈ [1 , n]. So, f(D̃) = D. The action of Σ(n) on E preserves the coherent

subsheaf E ⊗ OXn(−D̃). Define the invariant direct image

(3.4) V ′
E := (f∗(E ⊗ OXn(−D̃)))Σ(n) ⊂ f∗(E ⊗ OXn(−D̃)).

Clearly,

(3.5) V ′
E ⊂ VE .

The parabolic bundle VE∗ is defined as follows: (VE)1/2 = V ′
E and (VE)0 = VE

(see [MY]). Therefore, the quasi–parabolic filtration is a 1–step filtration, and it is
constructed from (3.5); the parabolic weights are 1/2 and 0.

Let F be a vector bundle over X. Define the vector bundles

(3.6) F :=

n⊕
i=1

p∗iF and VF := (f∗F)Σ(n).

Let VF∗ be the parabolic vector bundle on Sn(X), with VF as the underlying
vector bundle and parabolic structure over D, obtained by substituting F for E in
the above construction of VE∗. Define V ′

F ⊂ VE as done in (3.4). Let

(3.7) Hompar(VE∗ ,VF∗) ⊂ Hom(VE∗ ,VF∗)

be the sheaf of homomorphisms compatible with the parabolic structures [MY],
[MS]. We recall that a section T of Hom(VE∗ ,VF∗) = VF∗ ⊗ (VE∗)

∨ defined over
an open subset U ⊂ Sn(X) lies in Hompar(VE∗ ,VF∗) if and only if

T (V ′
E |U ) ⊂ V ′

F .
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Define the vector bundle

(3.8) WE,F :=

n⊕
i,j=1;i �=j

p∗iF ⊗ p∗jE
∨ −→ Xn.

The actions of Σ(n) on E∨ and F together define an action of Σ(n) on WE,F . Define
the vector bundle

(3.9) WE,F := (f∗WE,F )
Σ(n) −→ Sn(X).

Lemma 3.1. Let VF⊗E∨ be the vector bundle on Sn(X) obtained by substituting
F ⊗ E∨ for E in the construction of VE. There is a canonical injective homomor-
phism of OSn(X)–modules

H : VF⊗E∨ ⊕WE,F −→ Hompar(VE∗ ,VF∗) ,

where WE,F and Hompar(VE∗ ,VF∗) are defined in (3.9) and (3.7) respectively.

Proof. Consider E and F , defined in (3.2) and (3.6) respectively, equipped with
action of Σ(n). From the constructions of VF⊗E∨ and WE,F it follows that

VF⊗E∨ ⊕WE,F = (f∗(F ⊗ E∨))Σ(n).

Note that F ⊗ E∨ = (
⊕n

i=1 p
∗
i (F ⊗ E∨)) ⊕ WE,F , where WE,F is constructed in

(3.8).
Take any nonempty Zariski open subset U ⊂ Sn(X). Let

(3.10) φ : E|f−1(U) −→ F|f−1(U)

be a homomorphism which intertwines the actions of Σ(n) on E|f−1(U) and F|f−1(U),
where f is the quotient map in (3.1). Let

D̃U := D̃ ∩ f−1(U)

be the divisor on f−1(U). Let

(3.11) φ̃ := φ⊗ Id : E|f−1(U) ⊗Of−1(U)(−D̃U ) −→ F|f−1(U) ⊗Of−1(U)(−D̃U )

be the homomorphism, where Id is the identity automorphism of Of−1(U)(−D̃U ).
The restriction of φ to the subsheaf

E|f−1(U) ⊗Of−1(U)(−D̃U ) ⊂ E|f−1(U)

clearly coincides with φ̃.

Since the action of Σ(n) on Xn leaves D̃U invariant, we get an action of Σ(n)

on Of−1(U)(−D̃U ). The actions of Σ(n) on E|f−1(U) and Of−1(U)(−D̃U ) together

produce an action of Σ(n) on E|f−1(U) ⊗ Of−1(U)(−D̃U ). Similarly, F|f−1(U) ⊗
Of−1(U)(−D̃U ) is equipped with an action of Σ(n). Since φ in (3.10) is Σ(n)–

equivariant, it follows immediately that the homomorphism φ̃ in (3.11) is also Σ(n)–
equivariant. Consequently, φ produces a section of Hompar(VE∗ ,VF∗) over U .

Therefore, we have a homomorphism of OSn(X)–modules

(3.12) H : VF⊗E∨ ⊕WE,F −→ Hompar(VE∗ ,VF∗)

that sends any section φ of

(f∗(F ⊗ E∨))Σ(n) = VF⊗E∨ ⊕WE,F
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over some open subset U to the section of

Hompar(VE∗ ,VF∗)|U
constructed above from φ. �

Proposition 3.2. Take two vector bundles E and F on X. The homomorphism

Ĥ : H0(Sn(X), VF⊗E∨)⊕H0(Sn(X), WE,F ) −→ H0(Sn(X), Hompar(VE∗ ,VF∗))

given by H in Lemma 3.1 is an isomorphism.

Proof. Since H is injective, the corresponding homomorphism

Ĥ : H0(Sn(X), VF⊗E∨)⊕H0(Sn(X), WE,F ) −→ H0(Sn(X), Hompar(VE∗ ,VF∗))

is also injective. So to prove that Ĥ is an isomorphism, it suffices to show that

(3.13)
dimH0(Sn(X), Hompar(VE∗ ,VF∗)) ≤ dimH0(Sn(X), VF⊗E∨)

+ dimH0(Sn(X), WE,F ).

From the construction of the vector bundle Hompar(VE∗ ,VF∗) in (3.7) it follows
that

Hompar(VE∗ ,VF∗) ⊂ (f∗(F ⊗ E∨))Σ(n) ⊂ f∗(F ⊗ E∨) ,

where E and F are constructed in (3.2) and (3.6) respectively. Consequently,

H0(Sn(X), Hompar(VE∗ ,VF∗)) ⊂ H0(Xn, f∗(F ⊗ E∨))Σ(n).

Hence setting V and W in Proposition 2.1 to be F and E∨ respectively we conclude
that

H0(Sn(X), Hompar(VE∗ ,VF∗)) ⊂ H0(Xn, f∗(F ⊗ E∨))Σ(n)

= H0(X, F ⊗ E∨)⊕ (H0(X, F )⊗H0(X, E∨)).
(3.14)

On the other hand,

(3.15)
H0(X, F ⊗ E∨)⊕ (H0(X, F )⊗H0(X, E∨))

⊂ H0(Sn(X), VF⊗E∨)⊕H0(Sn(X), WE,F ).

Indeed, H0(X, F ⊗ E∨) ⊂ H0(Sn(X), VF⊗E∨) and

H0(X, F )⊗H0(X, E∨) ⊂ H0(Sn(X), WE,F ).

Combining (3.14) and (3.15),

H0(Sn(X), Hompar(VE∗ ,VF∗)) ⊂ H0(Sn(X), VF⊗E∨)⊕H0(Sn(X), WE,F ).

Therefore, we conclude that the inequality in (3.13) holds. This completes the proof
of the proposition. �

Theorem 3.3. There is a canonical isomorphism

H0(Sn(X), Hompar(VE∗ ,VF∗))
∼−→ H0(X, F ⊗E∨)⊕ (H0(X, F )⊗H0(X, E∨)).

Proof. From Proposition 3.2,

dimH0(Sn(X), Hompar(VE∗ ,VF∗)) = dimH0(Sn(X), VF⊗E∨)

+ dimH0(Sn(X), WE,F ) ,
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and from (3.15),

dimH0(X, F ⊗ E∨) + dim(H0(X, F )⊗H0(X, E∨))

≤ dimH0(Sn(X), VF⊗E∨) + dimH0(Sn(X), WE,F ).

Consequently,

dimH0(X, F ⊗ E∨) + dim(H0(X, F )⊗H0(X, E∨))

≤ dimH0(Sn(X), Hompar(VE∗ ,VF∗)).

On the other hand,

dimH0(Sn(X), Hompar(VE∗ ,VF∗)) ≤ dimH0(X, F ⊗ E∨)

+ dim(H0(X, F )⊗H0(X, E∨))

(see (3.14)). Combining these we conclude that

h0(Sn(X), Hompar(VE∗ ,VF∗)) = h0(X, F ⊗ E∨) + h0(X, F ) · h0(X, E∨)).

Therefore, the subspace

H0(Sn(X), Hompar(VE∗ ,VF∗))

in (3.14) coincides with the ambient space

H0(X, F⊗E∨)⊕(H0(X, F )⊗H0(X, E∨)). �
Corollary 3.4. Let E and F be stable vector bundles over X with

degree(E)/rank(E) = degree(F )/rank(F ).

Then
H0(Sn(X), Hompar(VE∗ ,VF∗)) = 0

if E �= F , and
dimH0(Sn(X), Hompar(VE∗ ,VF∗)) = 1

if E = F .

Proof. If degree(F ) ≤ 0, then H0(X, F ) = 0 because F is stable. If degree(F ) >
0, then H0(X, E∨) = 0 because E∨ is stable with degree(E∨) < 0.

Therefore, H0(X, F )⊗H0(X, E∨) = 0. Hence the corollary follows from The-
orem 3.3. �
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